[tpcode]#include <avr/interrupt.h>
#include <avr/io.h>
#include "LCD4Bit_mod.h"
#define DEBOUNCE_MAX 17 // max value for debounce count
#define DEBOUNCE_ON 12 // debounce pressed threshold 12x4ms = 48ms
#define DEBOUNCE_OFF 2 // debounce released threshold 8ms
//create object to control an LCD.
//number of lines in display=1
LCD4Bit_mod lcd = LCD4Bit_mod(2);
int potpin = A2; // POT connected to digital pin 2 - pos/neg are left and right connections on POT
int rpin = 3; // Red
int gpin = 10; // Green
int bpin = 11; // Blue
float h; // Hue range
int h_int; // Hue color
int r = 0, g = 0, b = 0; // Default RGB values
int val = 0; // Set POT value to default 0
void h2rgb(float h, int& R, int& G, int& B); // Instantiate h2rgb and it's variables a.k.a Hue to RGB
int adc_key_val[5] ={30, 150, 360, 535, 760 };
byte NUM_KEYS = 5;
char key=-1;
char oldkey=-1;
// debounce counters
byte button_count[5];
// button status - pressed/released
byte button_status[5];
// button on flags
byte button_flag[5];
// Timer2 interrupt routine -
// 1/(160000000/256/(256-6)) = 4ms interval
ISR(TIMER2_OVF_vect) {
TCNT2 = 6;
update_adc_key();
}
// Convert ADC value to key number
char get_key(unsigned int input)
{
char k;
for (k = 0; k < NUM_KEYS; k++)
{
if (input < adc_key_val[k])
{
return k;
}
}
if (k >= NUM_KEYS)
k = -1; // No valid key pressed
return k;
}
void update_adc_key(){
int adc_key_in;
char key_in;
byte i;
adc_key_in = analogRead(0);
key_in = get_key(adc_key_in);
for(i=0; i<NUM_KEYS; i++)
{
if(key_in==i) //one key is pressed
{
if(button_count[i]<DEBOUNCE_MAX)
{
button_count[i]++;
if(button_count[i]>DEBOUNCE_ON)
{
if(button_status[i] == 0)
{
button_flag[i] = 1; // pressed state flag ON
button_status[i] = 1; //button debounced to 'pressed' status
}
}
}
}
else // no button pressed
{
if (button_count[i] >0)
{
button_count[i]--;
if(button_count[i]<DEBOUNCE_OFF){
button_status[i]=0; //button debounced to 'released' status
}
}
}
// output button pressed state
if(button_flag[i]==1)
{
button_flag[i]=0; // clear flag to avoid repeats
Serial.print('A'+i,BYTE); // output MO button code
}
}
}
void setup() {
pinMode(13, OUTPUT); //we'll use the debug LED to output a heartbeat
digitalWrite(13,LOW);
Serial.begin(19200);
// reset button arrays
for(byte i=0; i<5; i++){
button_count[i]=0;
button_status[i]=0;
button_flag[i]=0;
}
// Setup timer2 -- Prescaler/256
TCCR2A &= ~((1<<WGM21) | (1<<WGM20));
TCCR2B &= ~(1<<WGM22);
TCCR2B = (1<<CS22)|(1<<CS21);
ASSR |=(0<<AS2);
// Use normal mode
TCCR2A =0;
//Timer2 Overflow Interrupt Enable
TIMSK2 |= (0<<OCIE2A);
TCNT2=0x6; // counting starts from 6;
TIMSK2 = (1<<TOIE2);
SREG|=1<<SREG_I;
lcd.init();
lcd.clear();
lcd.printIn("**LCD SMARTIE**");
lcd.cursorTo(2,3);
lcd.printIn("on Arduino");
}
byte serial_getch(){
int incoming;
while (Serial.available()==0){}
// read the incoming byte:
incoming = Serial.read();
return (byte) (incoming &0xff);
}
void loop(){
val = analogRead(potpin); // Read the pin and display the value
h = ((float)val)/1024; // Get the range. pot value / 1024
h_int = (int) 360*h; // Get the color hue by multiplying by 360
h2rgb(h,r,g,b); // Call the h2rgb function passing it the hue value
Serial.print("POT value: ");
Serial.print(val); // Pot value
Serial.print(" = Hue of ");
Serial.print(h_int); // Color Hue value
Serial.print(" degrees. RGB values: ");
Serial.print(r); // Red value
Serial.print(" ");
Serial.print(g); // Green value
Serial.print(" ");
Serial.println(b); // Blue value
analogWrite(rpin, r); // Changes red led
analogWrite(gpin, g); // Changes green led
analogWrite(bpin, b); // Changes blue led
byte rxbyte;
byte temp;
rxbyte = serial_getch();
if (rxbyte == 254) //Matrix Orbital uses 254 prefix for commands
{
switch (serial_getch())
{
case 66: //backlight on (at previously set brightness)
// not implemented
break;
case 70: //backlight off
// not implemented
break;
case 71: //set cursor position
temp = (serial_getch() - 1); //get column byte
switch (serial_getch()) //get row byte
{
//line 1 is already set up
case 2:
temp += 0x40;
break;
case 3:
temp += 0x14;
break;
case 4:
temp += 0x54;
break;
default:
break;
}
lcd.commandWrite(0b10000000 + temp);
break;
case 72: //cursor home (reset display position)
lcd.commandWrite(2);
break;
case 74: //show underline cursor
lcd.commandWrite(0b00001110);
break;
case 75: //underline cursor off
case 84: //block cursor off
lcd.commandWrite(0b00001100);
break;
case 76: //move cursor left
lcd.commandWrite(16);
break;
case 77: //move cursor right
lcd.commandWrite(20);
break;
case 78: //define custom char
lcd.commandWrite(64 + (serial_getch() * 8)); //get+set char address
for (temp = 7; temp != 0; temp--)
{
lcd.print(serial_getch()); //get each pattern byte
}
break;
case 83: //show blinking block cursor
lcd.commandWrite(0b00001111);
break;
case 86: //GPO OFF
//implement later
break;
case 87: //GPO ON
/*temp = serial_getch();
if (temp == 1)
{
GPO1 = GPO_ON;
}*/
break;
case 88: //clear display, cursor home
lcd.commandWrite(1);
break;
case 152: //set and remember (doesn't save value, though)
case 153: //set backlight brightness
//not implemented
break;
//these commands ignored (no parameters)
case 35: //read serial number
case 36: //read version number
case 55: //read module type
case 59: //exit flow-control mode
case 65: //auto transmit keypresses
case 96: //auto-repeat mode off (keypad)
case 67: //auto line-wrap on
case 68: //auto line-wrap off
case 81: //auto scroll on
case 82: //auto scroll off
case 104: //init horiz bar graph
case 109: //init med size digits
case 115: //init narrow vert bar graph
case 118: //init wide vert bar graph
break;
default:
//all other commands ignored and parameter byte discarded
temp = serial_getch(); //dump the command code
break;
}
return;
} //END OF COMMAND HANDLER
//change accented char to plain, detect and change descenders
//NB descenders only work on 5x10 displays. This lookup table works
// with my DEM-20845 (Display Elektronik GmbH) LCD using KS0066 chip.
switch (rxbyte)
{
//chars that have direct equivalent in LCD charmap
/* case 0x67: //g
rxbyte = 0xE7;
break;
case 0x6A: //j
rxbyte = 0xEA;
break;
case 0x70: //p
rxbyte = 0xF0;
break;
case 0x71: //q
rxbyte = 0xF1;
break;
case 0x79: //y
rxbyte = 0xF9;
break;
*/ case 0xE4: //ASCII "a" umlaut
rxbyte = 0xE1;
break;
case 0xF1: //ASCII "n" tilde
rxbyte = 0xEE;
break;
case 0xF6: //ASCII "o" umlaut
rxbyte = 0xEF; //was wrong in v0.86
break;
case 0xFC: //ASCII "u" umlaut
rxbyte = 0xF5;
break;
//accented -> plain equivalent
//and misc symbol translation
case 0xA3: //sterling (pounds)
rxbyte = 0xED;
break;
/* case 0xB0: //degrees symbol
rxbyte = 0xDF;
break;
*/ case 0xB5: //mu
rxbyte = 0xE4;
break;
case 0xC0: //"A" variants
case 0xC1:
case 0xC2:
case 0xC3:
case 0xC4:
case 0xC5:
rxbyte = 0x41;
break;
case 0xC8: //"E" variants
case 0xC9:
case 0xCA:
case 0xCB:
rxbyte = 0x45;
break;
case 0xCC: //"I" variants
case 0xCD:
case 0xCE:
case 0xCF:
rxbyte = 0x49;
break;
case 0xD1: //"N" tilde -> plain "N"
rxbyte = 0x43;
break;
case 0xD2: //"O" variants
case 0xD3:
case 0xD4:
case 0xD5:
case 0xD6:
case 0xD8:
rxbyte = 0x4F;
break;
case 0xD9: //"U" variants
case 0xDA:
case 0xDB:
case 0xDC:
rxbyte = 0x55;
break;
case 0xDD: //"Y" acute -> "Y"
rxbyte = 0x59;
break;
/* case 0xDF: //beta //mucks up LCDSmartie's degree symbol??
rxbyte = 0xE2;
break;
*/ case 0xE0: //"a" variants except umlaut
case 0xE1:
case 0xE2:
case 0xE3:
case 0xE5:
rxbyte = 0x61;
break;
case 0xE7: //"c" cedilla -> "c"
rxbyte = 0x63;
break;
case 0xE8: //"e" variants
case 0xE9:
case 0xEA:
case 0xEB:
rxbyte = 0x65;
break;
case 0xEC: //"i" variants
case 0xED:
case 0xEE:
case 0xEF:
rxbyte = 0x69;
break;
case 0xF2: //"o" variants except umlaut
case 0xF3:
case 0xF4:
case 0xF5:
case 0xF8:
rxbyte = 0x6F;
break;
case 0xF7: //division symbol
rxbyte = 0xFD;
break;
case 0xF9: //"u" variants except umlaut
case 0xFA:
case 0xFB:
rxbyte = 0x75;
break;
default:
break;
}
lcd.print(rxbyte); //otherwise a plain char so we print it to lcd
return;
}
void h2rgb(float h, int& R, int& G, int& B) {
// Used HSV --> RGB function
// HSV - Hue, Saturation, Value
// RGB - Red, Green, Blue - example (255,255,255)
// Function below does a bunch of math to convert HSV values to RGB
int var_i;
float S=1, V=1, var_1, var_2, var_3, var_h, var_r, var_g, var_b;
if ( S == 0 ) //HSV values = 0 ÷ 1
{
R = V * 255;
G = V * 255;
B = V * 255;
}
else
{
var_h = h * 6;
if ( var_h == 6 ) var_h = 0; //H must be < 1
var_i = int( var_h ) ; //Or ... var_i = floor( var_h )
var_1 = V * ( 1 - S );
var_2 = V * ( 1 - S * ( var_h - var_i ) );
var_3 = V * ( 1 - S * ( 1 - ( var_h - var_i ) ) );
if ( var_i == 0 ) {
var_r = V ;
var_g = var_3 ;
var_b = var_1 ;
}
else if ( var_i == 1 ) {
var_r = var_2 ;
var_g = V ;
var_b = var_1 ;
}
else if ( var_i == 2 ) {
var_r = var_1 ;
var_g = V ;
var_b = var_3 ;
}
else if ( var_i == 3 ) {
var_r = var_1 ;
var_g = var_2 ;
var_b = V ;
}
else if ( var_i == 4 ) {
var_r = var_3 ;
var_g = var_1 ;
var_b = V ;
}
else {
var_r = V ;
var_g = var_1 ;
var_b = var_2 ;
}
R = (1-var_r) * 255; //RGB results = 0 ÷ 255
G = (1-var_g) * 255;
B = (1-var_b) * 255;
}
}[/tpcode]